(MUST WATCH)
*Results may vary
A US researcher traveled to a remote island and uncovered a remarkable secret hidden within local trees—one that can help your body torch stubborn fat without grueling workouts or extreme diets!
This strange breakthrough triggers the same metabolic mechanism targeted by certain expensive weight loss drugs—but without any of the nasty side effects.
In fact, over 227,000 men and women are already using this simple daily routine to flatten their stomachs and fit back into clothes they never imagined wearing again.
It all revolves around a powerful fat-burning enzyme that’s been overlooked by the mainstream for years. By revving up this enzyme, your body can finally stop converting carbs into fat and instead burn them for fuel. That means you can enjoy your favorite bread, pasta, or dessert… and still watch the scale go down!
Want to see the exact “Bark Tree Loophole” that’s got everyone talking?
1. Liu F, Benashski SE, Persky R, et al. Age-related changes in AMP-activated protein kinase after stroke. Age (Dordr). 2012;34(1):157-68.
2. Salminen A, Kaarniranta K. AMP-activated protein kinase (AMPK) controls the aging process via an integrated signaling network. Ageing Res Rev. 2012;11(2):230-41.
3. Rojas J, Arraiz N, Aguirre M, et al. AMPK as Target for Intervention in Childhood and Adolescent Obesity. J Obes. 2011;2011:252817.
4. Fontana L, Hu FB. Optimal body weight for health and longevity: bridging basic, clinical, and population research. Aging Cell. 2014;13(3):391-400.
5. Hardie DG. AMPK: a key regulator of energy balance in the single cell and the whole organism. Int J Obes (Lond). 2008;32 Suppl 4:S7-12.
6. Jeon SM. Regulation and function of AMPK in physiology and diseases. Exp Mol Med. 2016;48(7):e245.
7. Park SH, Huh TL, Kim SY, et al. Antiobesity effect of Gynostemma pentaphyllum extract (actiponin): a randomized, double-blind, placebo-controlled trial. Obesity (Silver Spring). 2014;22(1):63-71.
8. Rizza S, Muniyappa R, Iantorno M, et al. Citrus polyphenol hesperidin stimulates production of nitric oxide in endothelial cells while improving endothelial function and reducing inflammatory markers in patients with metabolic syndrome. J Clin Endocrinol Metab. 2011;96(5):E782-92.
9. Available at: https://www.niddk.nih.gov/health-information/health-statistics/overweight-obesity. Accessed June 14, 2017.
10. Ahima RS. Connecting obesity, aging and diabetes. Nat Med. 2009;15(9):996-7.
11. Tchernof A, Despres JP. Pathophysiology of human visceral obesity: an update. Physiol Rev. 2013;93(1):359-404.
12. Gower BA, Casazza K. Divergent effects of obesity on bone health. J Clin Densitom. 2013;16(4):450-4.
13. Bays HE, Gonzalez-Campoy JM, Bray GA, et al. Pathogenic potential of adipose tissue and metabolic consequences of adipocyte hypertrophy and increased visceral adiposity. Expert Rev Cardiovasc Ther. 2008;6(3):343-68.
14. Harman-Boehm I, Bluher M, Redel H, et al. Macrophage infiltration into omental versus subcutaneous fat across different populations: effect of regional adiposity and the comorbidities of obesity. J Clin Endocrinol Metab. 2007;92(6):2240-7.
15. Whitmer RA, Gustafson DR, Barrett-Connor E, et al. Central obesity and increased risk of dementia more than three decades later. Neurology. 2008;71(14):1057-64.
16. Zhang C, Rexrode KM, van Dam RM, et al. Abdominal obesity and the risk of all-cause, cardiovascular, and cancer mortality: sixteen years of follow-up in US women. Circulation. 2008;117(13):1658-67.
17. Mihu D, Ciortea R, Mihu CM. Abdominal adiposity through adipocyte secretion products, a risk factor for endometrial cancer. Gynecol Endocrinol. 2013;29(5):448-51.
18. Wang H, Ni Y, Yang S, et al. The effects of gliclazide, metformin, and acarbose on body composition in patients with newly diagnosed type 2 diabetes mellitus. Curr Ther Res Clin Exp. 2013;75:88-92.
19. Xu XJ, Gauthier MS, Hess DT, et al. Insulin sensitive and resistant obesity in humans: AMPK activity, oxidative stress, and depot-specific changes in gene expression in adipose tissue. J Lipid Res. 2012;53(4):792-801.
20. Gauhar R, Hwang SL, Jeong SS, et al. Heat-processed Gynostemma pentaphyllum extract improves obesity in ob/ob mice by activating AMP-activated protein kinase. Biotechnol Lett. 2012;34(9):1607-16.
21. Tan Y, Kamal MA, Wang ZZ, et al. Chinese herbal extracts (SK0506) as a potential candidate for the therapy of the metabolic syndrome. Clin Sci (Lond). 2011;120(7):297-305.
22. Wang M, Wang F, Wang Y, et al. Metabonomics study of the therapeutic mechanism of Gynostemma pentaphyllum and atorvastatin for hyperlipidemia in rats. PLoS One. 2013;8(11):e78731.
23. Nguyen PH, Gauhar R, Hwang SL, et al. New dammarane-type glucosides as potential activators of AMP-activated protein kinase (AMPK) from Gynostemma pentaphyllum. Bioorg Med Chem. 2011;19(21):6254-60.
24. Virdis A, Santini F, Colucci R, et al. Vascular generation of tumor necrosis factor-alpha reduces nitric oxide availability in small arteries from visceral fat of obese patients. J Am Coll Cardiol. 2011;58(3):238-47.
25. Romero-Corral A, Sert-Kuniyoshi FH, Sierra-Johnson J, et al. Modest visceral fat gain causes endothelial dysfunction in healthy humans. J Am Coll Cardiol. 2010;56(8):662-6.
26. Rajendran P, Rengarajan T, Thangavel J, et al. The vascular endothelium and human diseases. Int J Biol Sci. 2013;9(10):1057-69.
27. Jacobson TA. Opening a new lipid “apo-thecary”: incorporating apolipoproteins as potential risk factors and treatment targets to reduce cardiovascular risk. Mayo Clin Proc. 2011;86(8):762-80.
28. Sacks FM, Alaupovic P, Moye LA, et al. VLDL, apolipoproteins B, CIII, and E, and risk of recurrent coronary events in the Cholesterol and Recurrent Events (CARE) trial. Circulation. 2000;102(16):1886-92.
29. Ohara T, Muroyama K, Yamamoto Y, et al. Oral intake of a combination of glucosyl hesperidin and caffeine elicits an anti-obesity effect in healthy, moderately obese subjects: a randomized double-blind placebo-controlled trial. Nutr J. 2016;15:6.
30. Mizushima N, Levine B, Cuervo AM, et al. Autophagy fights disease through cellular self-digestion. Nature. 2008;451(7182):1069-75.
31. Rubinsztein David C, Mariño G, Kroemer G. Autophagy and Aging. Cell. 2011;146(5):682-95.
32. Madeo F, Zimmermann A, Maiuri MC, et al. Essential role for autophagy in life span extension. Journal of Clinical Investigation. 2015;125(1):85-93.
33. Kroemer G. Autophagy: A druggable process that is deregulated in aging and human disease. Journal of Clinical Investigation. 2015;125(1):1-4.
34. Pallauf K, Rimbach G. Autophagy, polyphenols and healthy ageing. Ageing Research Reviews. 2013;12(1):237-52.
35. McCarty MF. AMPK activation–protean potential for boosting healthspan. Age (Dordr). 2014;36(2):641-63.
36. Burkewitz K, Zhang Y, Mair WB. AMPK at the nexus of energetics and aging. Cell Metabolism. 2014;20(1):10-25.
37. Hardie DG. AMPK: a key regulator of energy balance in the single cell and the whole organism. Int J Obes (Lond). 2008;32 Suppl 4:S7-12.
38. Available at: https://www.newhope.com/idea-xchange/activating-ampk-key-weight-loss
39. Available at: https://www.sciencedaily.com/releases/2019/01/190115111944.htm
40. Available at: https://www.lifeextension.com/magazine/2017/ss/boost-ampk-to-reduce-abdominal-fat
41. Available at: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8698496/
42. Available at: https://www.sciencedaily.com/releases/2019/01/190115111944.htm
43. Available at: https://www.tandfonline.com/doi/full/10.1080/10408398.2022.2087595
44. Available at: https://www.sciencedirect.com/science/article/pii/S0022227520345041
-
Philodendron Amurense (Berberis Aristata)
-
Cassia Cinnamon Bark (Cinnamomum aromaticum)
-
Panax quinquefolius (Panax Ginseng)
-
Phaseolus vulgaris (White Kidney Bean)
-
Alpha Lipoic Acid (ALA)
-
Luteolin (Perilla Frutescens)
-
Oleuropein (Olea Europaea)
-
Bioperine (Piperine)